

Editorial

Treatment deescalation for older women with favorable breast cancers: patient values and shared decision making

Deborah R. Smith, MD¹ and Silvia C. Formenti , MD^{*,1,2,3}

¹Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, United States

²Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States

³Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, United States

*Corresponding author: Silvia Chiara Formenti, MD, Sandra and Edward Meyer Professor of Cancer Research, Professor of Radiation Oncology and Medicine, Chairman, Department of Radiation Oncology, Associate Director for Translational Research, Meyer Cancer Center, Weill Cornell Medicine, Radiation Oncologist in Chief, New York-Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, United States (formenti@med.cornell.edu).

Adjuvant radiation therapy following breast-conservation surgery halves local recurrence rates while modestly improving breast cancer-specific survival for early-stage breast cancers.¹ Both increased uptake and technologic advancements in radiographic screening for breast cancers over the past 20 years have facilitated earlier diagnosis producing a leftward stage shift.^{2,3} Concurrently, local recurrence rates have also declined because of a combination of modern surgical techniques and widespread adoption of adjuvant endocrine therapies, fueling interest in therapeutic de-intensification among women with favorable clinicopathologic features, particularly surrounding omission of adjuvant breast radiotherapy. While radiation therapy effectively reduces local recurrence rates, interest has grown in exploring radiation treatment omission because of established risks to adjacent normal tissues, including local symptoms such as breast pain, breast swelling, late fibrosis and adverse cosmesis, radiation dermatitis, hyperpigmentation, brachial plexopathy, cardiopulmonary effects, and small but real risks of radiation-induced secondary malignancies.⁴

Specifically among older women, deferring postoperative radiation therapy has become widely accepted as an appropriate option for patients willing and able to commit to long-term endocrine therapy based on the landmark CALGB 9343 and PRIME II trials, which both demonstrated absolute 10-year locoregional recurrence rates of 10% and 9.5%, respectively, which fell to only 2% and 1% with the addition of adjuvant radiotherapy among tamoxifen-treated women.⁵⁻⁶ Several trials including DEBRA, EXPERT, IDEA, and LUMINA are currently investigating whether this paradigm can be safely extrapolated among younger women with favorable breast cancers based on tumor biology and molecular phenotypic profiling.⁷⁻¹⁰

Expanding on PRIME II and CALGB 9343, Palmer and colleagues¹¹ provide further longitudinal data on local recurrence rates and prognosis following omission of postoperative radiation therapy among older women receiving long-term endocrine therapy. The authors conducted a single-arm prospective phase II trial among 601 women aged 65 years and older who received

6 years of physician's choice endocrine therapy without radiation treatment for hormone receptor-positive T1N0 breast cancers. Patient-reported medication adherence was 86.6%, with approximately 90% of women receiving tamoxifen. Reassuringly, the authors observed cumulative 10-year local recurrence, contralateral breast cancer incidence, and overall survival rates of 5.5%, 4.5%, and 83.1%, respectively, with more than 99% 10-year breast cancer-specific survival.

Incidentally, in the original PRIME I trial examining radiation treatment omission, receipt of adjuvant radiation therapy among older women did not compromise either functionality or overall quality of life.¹² Despite transiently increased fatigue and persistently increased local breast symptoms, patients who received radiation ultimately experienced less anxiety about recurrence. While cosmetic results were predictably better among those who had not received radiation therapy, this was not meaningfully important to many patients. Prospective patient-reported outcomes from a multicenter real-world study indicated that older patients also often feel less bothered than younger women by posttreatment local breast symptoms.¹³

While this trial represents another valuable contribution supporting omission of adjuvant radiotherapy among highly motivated older women with favorable hormone receptor-positive breast cancers who have committed to long durations of hormonal therapy, we believe that shared decision making remains essential toward truly personalizing treatment recommendations. Importantly, physician biases must be mitigated by a dispassionate discussion of data to empower the patients to choose their preferred treatment approaches.

Currently, it remains uncertain whether all women require hormonal therapy to help prevent distant metastases and reduce breast cancer mortality during the modern era. Multiple trials including BASO II, GBSG-V, and NSABP B21 did not suggest elevated distant metastases or compromised survival among women with early-stage breast cancers following adjuvant radiation treatment when omitting tamoxifen.¹⁴⁻¹⁶ Accordingly, longitudinal survival benefits from endocrine therapy for favorable

Received: December 13, 2024. Revised: December 18, 2024. Accepted: December 19, 2024

© The Author(s) 2025. Published by Oxford University Press. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

Table 1. Randomized clinical trials demonstrating improved local control following adjuvant radiation therapy after breast-conservation surgery among early-stage breast cancer patients treated with hormonal therapy

Study	N	Age cutoff, y	Cohort	Hormonal therapy	Treatment arms	Landmark	Outcomes
CALGB 9343 ⁵ (Hughes et al., JCO 2013)	636	70 and older	T1N0, estrogen receptor positive	Tamoxifen (5 years)	RT vs no RT	10 years	Local recurrence: 2% vs 10% ($P < .001$)
PRIME II ⁶ (Kunkler et al., NEJM 2023)	1326	65 and older	Tumor <3 cm, N0, estrogen receptor positive	Tamoxifen (5 years)	RT vs no RT	10 years	Local recurrence: 9.5% vs 0.9% ($P < .001$)
NSABP B21 ¹⁶ (Fisher et al., JCO 2002)	1009	None	Tumor <1 cm, N0	Tamoxifen (5 years)	RT vs tamoxifen vs RT/tamoxifen	8 years	Local recurrence: 2.8% tamoxifen /RT, 9.3% RT, 16.5% tamoxifen ($P < .001$)
BASO II ¹⁴ (Blamey et al., 2013)	1135	Younger than 70	T1N0, grade I, no lymphovascular invasion	Tamoxifen (5 years)	2 x 2 factorial design (RT/tamoxifen)	10 years	Local recurrence: 17% breast-conservation surgery, 7% breast-conservation surgery/RT, 7% breast-conservation surgery/ tamoxifen, 0% breast-conservation surgery/ tamoxifen /RT ($P < .001$)
GBSG-V ¹⁵ (Winzer et al., 2010)	361	45-75	T1N0, grade I-II, hormone receptor positive, no lymphovascular invasion	Tamoxifen (2 years)	2 x 2 factorial design (RT/tamoxifen)	8 years	Event-free survival: 48% breast-conservation surgery, 78% breast-conservation surgery/RT, 78% breast-conservation surgery/ tamoxifen /RT ($P < .0001$)
PMH Toronto ²⁷ (Fyles et al., 2004)	769	50	T1-T2 (median = 1.4 cm)	Tamoxifen (5 years)	RT vs no RT	8 years	Local recurrence: 3.5% vs 17.6% ($P < .001$)
ABCSG ²⁸ (Potter et al., 2007)	869	None	Tumor <3 cm, grade I-II, hormone receptor positive	Tamoxifen/ anastrozole (5 years)	RT vs no RT	5 years	Local recurrence: 2.1% vs 6.1% ($P = .002$)

Abbreviation: RT = radiation therapy.

early-stage breast cancers remain less clear in the era of modern surgical techniques, and older women especially may be less likely to manifest possible survival benefits amidst competing medical comorbidities.

Meanwhile, many women experience nontrivial side effects from tamoxifen and aromatase inhibitors including fatigue, insomnia, headaches, malaise, weight gain, dysphoria, mood changes, nausea, hot flashes, and sexual dysfunction that can significantly impact quality of life. Although aromatase inhibitors avoid the elevated risks of thromboembolism and endometrial cancer associated with tamoxifen, they confer greater risks of cardiovascular morbidity, arthralgias, myalgias, and osteoporotic fractures.¹⁷⁻²⁰ As a result, many patients eventually reduce, temporarily pause, or discontinue treatment. Early trials described variable compliance rates with hormonal therapy ranging from 69% to 89%, with almost 20% of patients discontinuing medication within 2 years.²¹ Even in PRIME II, where fewer than 70% of women successfully completed 5 years of endocrine therapy, women randomly assigned to omit radiation treatment who discontinued hormonal therapy experienced substantially increased local recurrence risk compared with those who completed recommended tamoxifen (hazard ratio = 4.66, 95% confidence interval = 1.77 to 1.25).⁶ Real-world medication adherence

is likely lower than desired even among women who complete recommended durations of long-term endocrine therapy compared with patients enrolled in clinical trials, who often receive frequent monitoring, reinforcement of medication adherence and support to enhance compliance.

Real-world evidence confirms that tolerance of endocrine therapy is often challenging. Observed compliance rates are widely variable, averaging around 66%.²²⁻²⁵ In one study where more than 30% of women discontinued endocrine therapy before reaching the recommended 5-year treatment duration, almost an additional 30% who did complete their recommended duration of therapy were nonadherent with medication, and both early discontinuation and medication nonadherence independently predicted mortality.²⁵ Community-treated patients are likely to experience similar patterns of noncompliance, prompting ongoing trials examining de-escalation of endocrine therapy.²⁶

Meanwhile, radiation treatment adherence can be easily monitored and assured. Many randomized trials have confirmed the long-standing value of postoperative radiation toward preventing local recurrences (Table 1).^{5-6,14-16,27-28} Local recurrence importantly remains a top concern for breast cancer patients. Although physicians often place greatest value on survival

benefit, patients frequently prioritize treatment options that minimize any recurrence risk and express strong desire to minimize their likelihood of relapse, even if that requires more intensive treatment regimens associated with greater side effects. Research focused on patient perspectives consistently indicates that early breast cancer patients place substantial value on the benefits of radiation therapy toward preventing local recurrences,²⁹ even prompting some women to opt for bilateral mastectomies as a drastic strategy with the hope of preventing local recurrences of early breast cancers. Long-standing fear of recurrence can dramatically impact well-being and quality of life,³⁰ which may be at least partly alleviated by the knowledge of having pursued all available treatment options to minimize individual risk. Particularly after deciding to omit adjuvant radiation treatment, subsequent breast cancer recurrences may cause guilt, regret, and heightened psychological distress. Older women may also tolerate less well additional procedures required for salvage treatment. For these reasons, some women may consider denying the choice for adjuvant radiation treatment based on age alone as discriminatory.

Accordingly, practicing shared decision making emerges as critical for empowering women to choose their preferred approach. Fortunately, available radiation treatment options have evolved to include partial breast radiotherapy as well as ultrahypofractionated whole breast radiation therapy delivered over only 1 week.³¹⁻³² These shortened courses of radiation align with the goal of therapeutic de-escalation, preserving well-established local control benefits from adjuvant radiotherapy while minimizing logistical burdens and financial strain potentially resulting from longer regimens. Modern techniques, including partial breast irradiation as well as prone positioning and supine breath hold techniques, enable exceedingly low rates of late cardiac and pulmonary side effects through avoidance of normal heart and lung tissue and can be easily implemented in most treatment centers.³³⁻³⁴

Comparative patient-reported quality-of-life data surrounding adjuvant treatment options are rapidly emerging. The Canadian REaCT-70 study recently highlighted the central importance of patient preferences surrounding adjuvant treatment options.³⁵ After attempting to randomly assign women with hormone receptor-positive breast cancers to either receive or forego adjuvant endocrine therapy following optimal local therapy, the study was suspended after failing to achieve feasibility outcomes with many women opting away from endocrine therapy altogether, as half of patients declined enrollment and an additional 7.7% opted out after random assignment. Research comparing patient perspectives toward radiotherapy vs endocrine therapy suggests that patients more frequently report negative impact on quality of life from hormonal therapy than radiation treatment (35% vs 14%) and more frequently prefer radiation treatment over hormonal therapy (57% vs 43%).³⁶ Recent interim results of the EUROPA trial, a phase III randomized noninferiority trial comparing quality of life and local recurrence rates following hormonal therapy or postoperative radiation therapy alone among older women, confirmed that endocrine therapy confers more detrimental impacts on global quality of life than radiation treatment with superior 2-year quality of life following radiation treatment alone.³⁷

Especially following the advent of accelerated partial breast irradiation and ultrafractionated whole breast radiation therapy facilitating only 1 week of radiation treatment, clinical decisions must be carefully tailored to each individual patient. Although Palmer and colleagues¹¹ provide additional helpful data

supporting omission among older women strongly motivated to pursue long-term endocrine therapy, shared decision making remains more important than ever based on each individual person's preferences, values, and life circumstances. Ensuring that all patients including older women are fully informed regarding comparative advantages and potential drawbacks of all available treatment options remains essential for protecting patient autonomy and providing patient-centered care.

Author contributions

Silvia Formenti, MD (Investigation) and Deborah Smith, MD (Writing—original draft).

Funding

No funding was used for this editorial.

Conflicts of interest

Deborah R. Smith has no disclosures. Silvia C. Formenti reports grants from the National Cancer Institute (NCI) U54 CA274291, Department of Defense (DoD) BC180595/W81XWH-19-1-0142 and BC201085P3 W81XHW21-2-0034, Congressionally Directed Medical Research Programs, Breast Cancer Research Foundation (BCRF) -24-053, Merck, Arcus, and Celldex. Also, she reports, Bristol Myers Squibb and Varian, consultant fees from AstraZeneca, Regeneron, Merck, Genentech Roche, EMD Serono, Viewray, Varian, Boehringer Ingelheim, Nanobiotix, Telix, and Embiosys.

Data availability

No new data were generated or analyzed for this editorial.

References

1. Darby S, McGale P, Correa C, et al.; Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. *Lancet*. 2011;378: 1707-1716. [https://doi.org/10.1016/S0140-6736\(11\)61629-2](https://doi.org/10.1016/S0140-6736(11)61629-2).
2. Canavan J, Truong PT, Smith SL, et al. Local recurrence in women with stage I breast cancer: declining rates over time in a large, population-based cohort. *Int J Radiat Oncol Biol Phys*. 2014;88:80-86. <https://doi.org/10.1016/j.ijrobp.2013.10.001>
3. Malmgren JA, Atwood MK, Kaplan HG. Increase in mammography detected breast cancer over time at a community based regional cancer center: a longitudinal cohort study 1990-2005. *BMC Cancer*. 2008;8:131. <https://doi.org/10.1186/1471-2407-8-131>
4. Grantzau T, Overgaard J. Risk of second non-breast cancer among patients treated with and without postoperative radiotherapy for primary breast cancer: a systematic review and meta-analysis of population-based studies including 522,739 patients. *Radiother Oncol*. 2016;121:402-413. <https://doi.org/10.1016/j.radonc.2016.08.017>
5. Hughes KS, Schnaper LA, Bellon JR, et al. Lumpectomy plus tamoxifen with or without irradiation in women age 70 years or with early breast cancer: long-term follow-up of CALGB 9343. *J Clin Oncol*. 2013;31:2382-2387. <https://doi.org/10.1200/JCO.2012.45.2615>

6. Kunkler IH, Williams LJ, Jack WJL, et al. Breast-conserving surgery with or without irradiation in early breast cancer. *N Engl J Med.* 2023;388:585-594. <https://doi.org/10.1056/NEJMoa2207586>
7. White JR, Anderson SJ, Harris EE, et al. NRG-BR007: a phase III trial evaluating de-escalation of breast radiation (DEBRA) following breast-conserving surgery (BCS) of stage 1, hormone receptor+, HER2-, RS \leq 18 breast cancer. *J Clin Oncol.* 2022;40: TPS613-TPS613. https://doi.org/10.1200/JCO.2022.40.16_suppl.TPS613
8. Breast Cancer Trials, Australia and New Zealand. EXamining PErsonalised Radiation Therapy for Low-risk Early Breast Cancer (EXPERT). Clinicaltrials.gov. Accessed December 9, 2024. <https://clinicaltrials.gov/study/NCT02889874>.
9. Jagis R, Griffith KA, Harris EE, et al. Omission of radiotherapy after breast-conserving surgery for women with breast cancer with low clinical and genomic risk: 5-year outcomes of IDEA. *J Clin Oncol.* 2024;42:390-398. <https://doi.org/10.1200/JCO.23.02270>
10. Whelan TJ, Smith S, Parpia S, et al.; LUMINA Study Investigators. Omitting radiotherapy after breast-conserving surgery in luminal a breast cancer. *N Engl J Med.* 2023;389: 612-619. <https://doi.org/10.1056/NEJMoa2302344>
11. Palmér S, Valachis A, Lindman H, et al. Omission of postoperative radiotherapy after breast-conserving surgery in low-risk breast cancer. *J Natl Cancer Inst.* <https://doi.org/10.1093/jncidjae315>
12. Williams LJ, Kunkler IH, King CC, et al. A randomised controlled trial of post-operative radiotherapy following breast-conserving surgery in a minimum-risk population. Quality of life at 5 years in the PRIME trial. *Health Technol Assess.* 2011;15:i-xi, 1-57. <https://doi.org/10.3310/hta15120>
13. Jagis R, Griffith KA, Vicini F, et al.; Michigan Radiation Oncology Quality Consortium. Toward improving patients' experiences of acute toxicity from breast radiotherapy: insights from the analysis of patient-reported outcomes in a large multicenter cohort. *J Clin Oncol.* 2020;38:4019-4029. <https://doi.org/10.1200/JCO.20.01703>
14. Blamey RW, Bates T, Chetty U, et al. Radiotherapy or tamoxifen after conserving surgery for breast cancers of excellent prognosis: British Association of Surgical Oncology (BASO) II trial. *Eur J Cancer.* 2013;49:2294-2302. <https://doi.org/10.1016/j.ejca.2013.02.031>
15. Winzer K-J, Sauerbrei W, Braun M, et al.; German Breast Cancer Study Group (GBSG). Radiation therapy and tamoxifen after breast-conserving surgery: updated results of a 2 x 2 randomised clinical trial in patients with low risk of recurrence. *Eur J Cancer.* 2010;46:95-101. <https://doi.org/10.1016/j.ejca.2009.10.007>
16. Fisher B, Bryant J, Dignam JJ, et al.; National Surgical Adjuvant Breast and Bowel Project. Tamoxifen, radiation therapy, or both for prevention of ipsilateral breast tumor recurrence after lumpectomy in women with invasive breast cancers of one centimeter or less. *J Clin Oncol.* 2002;20:4141-4149. <https://doi.org/10.1200/JCO.2002.11.101>
17. Early Breast Cancer Trialists' Collaborative Group EBCTCG: Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. *Lancet.* 2015;386:1341-1352.
18. Crew KD, Greenlee H, Capodice J, et al. Prevalence of joint symptoms in postmenopausal women taking aromatase inhibitors for early-stage breast cancer. *J Clin Oncol.* 2007;25:3877-3883. <https://doi.org/10.1200/JCO.2007.10.7573>
19. Coleman RE, Bolten WW, Lansdown M, et al. Aromatase inhibitor-induced arthralgia: clinical experience and treatment recommendations. *Cancer Treat Rev.* 2008;34:275-282. <https://doi.org/10.1016/j.ctrv.2007.10.004>
20. Matthews A, Stanway S, Farmer RE, et al. Long term adjuvant endocrine therapy and risk of cardiovascular disease in female breast cancer survivors: systematic review. *BMJ.* 2018;363: k3845. <https://doi.org/10.1136/bmj.k3845>
21. Davies C, Godwin J, Gray R, et al.; Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. *Lancet.* 2011;378:771-784. [https://doi.org/10.1016/S0140-6736\(11\)60993-8](https://doi.org/10.1016/S0140-6736(11)60993-8)
22. Partridge AH, Wang PS, Winer EP, Avorn J. Nonadherence to adjuvant tamoxifen therapy in women with primary breast cancer. *J Clin Oncol.* 2003;21:602-606. <https://doi.org/10.1200/JCO.2003.07.071>
23. Yussof I, Mohd Tahir NA, Hatah E, Mohamed Shah N. Factors influencing five-year adherence to adjuvant endocrine therapy in breast cancer patients: a systematic review. *Breast.* 2022;62:22-35. <https://doi.org/10.1016/j.breast.2022.01.012>
24. Neugut AI, Zhong X, Wright JD, et al. Nonadherence to medications for chronic conditions and nonadherence to adjuvant hormonal therapy in women with breast cancer. *JAMA Oncol.* 2016;2:1326-1332. <https://doi.org/10.1001/jamaoncol.2016.1291>
25. Hershman DL, Shao T, Kushi LH, et al. Early discontinuation and nonadherence to adjuvant hormonal therapy are associated with increased mortality in women with breast cancer. *Breast Cancer Res Treat.* 2011;126:529-537. <https://doi.org/10.1007/s10549-010-1132-4>
26. DeCensi A. Low dose exemestane vs low dose tamoxifen in post-menopausal women at high risk for breast cancer. (BabyTears). Clinicaltrials.gov. Accessed December 9, 2024. <https://clinicaltrials.gov/study/NCT06364267>.
27. Fyles AW, McCready DR, Manchul LA, et al. Tamoxifen with or without breast irradiation in women 50 years of age or older with early breast cancer. *N Engl J Med.* 2004;351:963-970. <https://doi.org/10.1056/NEJMoa040595>
28. Pötter R, Gnant M, Kwasny W, et al. Austrian Breast and Colorectal Cancer Study Group. Lumpectomy plus tamoxifen or anastrozole with or without whole breast irradiation in women with favorable early breast cancer. *Int J Radiat Oncol Biol Phys.* 2007;68:334-340. <https://doi.org/10.1016/j.ijrobp.2006.12.045>
29. Hayman JA, Fairclough DL, Harris JR, Weeks JC. Patient preferences concerning the trade-off between the risks and benefits of routine radiation therapy after conservative surgery for early-stage breast cancer. *J Clin Oncol.* 1997;15:1252-1260. <https://doi.org/10.1200/JCO.1997.15.3.1252>
30. Yang HC, Brothers BM, Andersen BL. Stress and quality of life in breast cancer recurrence: moderation or mediation of coping? *Ann Behav Med.* 2008;35:188-197. <https://doi.org/10.1007/s12160-008-9016-0>
31. Meattini I, Marrazzo L, Saieva C, et al. Accelerated partial-breast irradiation compared with whole-breast irradiation for early breast cancer: long-term results of the randomized phase III APBI-IMRT-florence trial. *J Clin Oncol.* 2020;38:4175-4183. <https://doi.org/10.1200/JCO.20.00650>
32. Murray Brunt A, Haviland JS, Wheatley DA, et al.; FAST-Forward Trial Management Group. Hypofractionated breast radiotherapy for 1 week versus 3 weeks (FAST-Forward): 5-year efficacy and late normal tissue effects results from a multicentre, non-inferiority, randomised, phase 3 trial. *Lancet.* 2020;395:1613-1626. [https://doi.org/10.1016/S0140-6736\(20\)30932-6](https://doi.org/10.1016/S0140-6736(20)30932-6)

33. Formenti SC, DeWyngaert JK, Jozsef G, Goldberg JD. Prone vs supine positioning for breast cancer radiotherapy. *JAMA*. 2012;308:861-863. <https://doi.org/10.1001/2012.jama.10759>

34. Formenti SC, Hsu H, Fenton-Kerimian M, et al. Prone accelerated partial breast irradiation after breast-conserving surgery: five-year results of 100 patients. *Int J Radiat Oncol Biol Phys*. 2012;84:606-611. <https://doi.org/10.1016/j.ijrobp.2012.01.039>

35. Savard MF, Sienkiewicz M, Ahmed S, et al. 126P: A randomized controlled trial (RCT) comparing optimal local treatment with or without endocrine therapy (ET) in patients (pts) aged ≥ 70 with lower risk breast cancer (BC) [REaCT-70 Study]. *ESMO Open*, 2024;9 (suppl 4):103114. <https://doi.org/10.1016/j.esmoop.2024.103114>.

36. Savard M-F, Alzahrani MJ, Saunders D, et al. Experiences and perceptions of older adults with lower-risk hormone receptor-positive breast cancer about adjuvant radiotherapy and endocrine therapy: a patient survey. *Curr Oncol*. 2021;28:5215-5226. <https://doi.org/10.3390/curroncol28060436>

37. Meattini I, De Santis MC, Visani L, et al. Single-modality endocrine therapy versus radiotherapy after breast-conserving surgery in women aged 70 years and older with luminal a-like Early Breast Cancer (EUROPA): a preplanned interim analysis of a phase 3, non-inferiority, randomised trial. *Lancet Oncol*. 2024;26:37-50. [https://doi.org/10.1016/S1470-2045\(24\)00661-2](https://doi.org/10.1016/S1470-2045(24)00661-2)